SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code :APPLIED PHYSICS (20HS0849)

Course & Branch: B.Tech – CSE, CAD,CCC,CSM,CIC,CIT & CAI (I –SEM), ECE & EEE (II SEM).

Year &Sem: I-B.Tech I & I/II -Sem. Regulation: R20

UNIT-I (WAVE OPTICS)

1	a b	State and explain principle of superposition. Define interference and summarizing the importance conditions to get sustained interference.	[CO1] [CO1]	[6M] [6M]	[L2] [L2]
2	a	Discuss the theory of interference of light due to thin films by reflection with suitable ray diagram.	[CO1]	[4M]	[L1]
	b	Derive the condition for bright and dark rings interference in the case of thin films by reflected light.	[CO1]	[8M]	[L4]
3	a	Describe the formation of Newton's ring with necessary theory with relevant diagram and derive the expressions for dark and bright fringes.	[CO1]	[9M]	[L3]
	b		[CO1]	[3M]	[L4]
4	a	How the wavelength of light sources is determined by using Newton's ring's concept.	[CO1]	[8M]	[L4]
	b	In a Newton's rings experiment the diameter of the 8 th ring was 0.35cm and the diameter of the 18 th ring was 0.65cm.If the wavelength of the light used is 6000A° then find the radius of curvature of the plano-convex lens.	[CO1]	[4M]	[L4]
5	a	What are engineering applications of interference?	[CO1]	[4M]	[L3]
	b	What are engineering applications of diffraction?	[CO1]	[4M]	[L3]
	c	A parallel beam of light of 6000 A° is incident on a thin glass plate of refractive index 1.5 such that the angle of refraction into the plate is 50°. Calculate the least thickness of the glass plate which will appear dark by reflection.	[CO1]	[4M]	[L4]
6	a	Define diffraction? Distinguish between Fraunhofer and Fresnel's diffraction,	[CO1]	[6M]	[L4]
	b	Compare Interference and Diffraction.	[CO1]	[6M]	[L2]
7	a	In the study of Fraunhofer diffraction due to single slit how the diffraction fringes formed.	[CO1]	[8M]	[L4]
	b	Obtain conditions for bright and dark fringes in single slit diffraction pattern and draw intensity distribution.	[CO1]	[4M]	[L4]
8	a	Describe Fraunhofer diffraction due to double slit and derive the conditions for principal maxima, secondary maxima and minima.	[CO1]	[8M]	[L2]
	b	A plane transmission grating having 4250 lines per cm is illuminated with sodium light normally. In the second order spectrum, the spectral lines are deviated by 30° . What is the wavelength of the spectral line?	[CO1]	[4M]	[L4]

9	a	Define diffraction grating and write about construction of	[CO1]	[8M]	[L1]
	1	diffraction grating.	[CO1]	[/] / []	ET 21
	b	Find the highest order that can be seen with a grating having 15000 lines/inches. The wavelength of the light used is 600nm.	[CO1]	[4M]	[L3]
10	a	Define following terms	[CO1]	[6M]	[L1]
10	а	i. Grating spectrum ii. Grating element	[CO1]	[01/1]	[121]
	b	How wavelength light is determined by diffraction grating.	[CO1]	[6M]	[L2]
UN	JIT -	- II (ELECTRON THEORY OF METALS & ELECTROMAG	NETIC	THEO	RY)
01)
1	a	Define the following electrical properties of a material	[CO2]	[6M]	[L1]
		i) Drift Velocity (ii) Mean free path (iii) Relaxation time			
	b	Derive an expression for electrical conductivity in a metal by	[CO2]	[6M]	[L4]
2		using classical free electron theory.	[CO2]	[<i>C</i>] <i>M</i>]	FT 11
2	a	What are the postulates, merits and drawbacks of classical free electron theory?	[CO2]	[6M]	[L1]
	b	Define electrical conductivity and resistivity of a material.	[CO2]	[2M]	[L1]
	c	Find relaxation time of conduction electron in metal if its	[CO2]	[4M]	[L1]
		resistivity is $1.54 \times 10^{-8} \Omega$ -m and it has 5.8×10^{28} conduction	[002]	[]	[]
		electron/m ³ .Given m= 9.1×10^{-31} kg, e= 1.6×10^{-19} C.			
3	a	What are the advantages of quantum free electron theory over	[CO2]	[2M]	[L1]
		classical free electron theory?			
	b	Derive an expression for electrical conductivity in a metal by	[CO2]	[6M]	[L4]
		quantum free electron theory.	50001	5 43 63	FT 43
	c	Write brief note on Fermi Dirac distribution. What is the effect of	[CO2]	[4M]	[L1]
4	0	temperature on Fermi Dirac distribution function? Evaluate Fermi Function for energy K _B T above Fermi level?	[CO2]	[4M]	[L4]
4	a b	Define effective mass and derive the expression for effective	[CO2]	[4M]	[L4]
	U	mass of an electron in periodic potential field.	[CO2]	[-11/1]	[L7]
	c	Describe the various sources of electrical resistance in metals.	[CO2]	[4M]	[L1]
5	a	Explain the formation of energy bands in solids.	[CO2]	[6M]	[L2]
	b	Classify the solids into conductor, semiconductor & insulators	[CO2]	[6M]	[L2]
		based on band theory of solids.			
6	a	Write a significance of divergence and curl of a vector.	[CO2]	[4M]	[L1]
	b	If electric field $\vec{E} = x^2\hat{\imath} + 2y^2\hat{\jmath} + 3z^2\hat{k}$ then find the divergence	[CO2]	[4M]	[L3]
		of \vec{E} .			
	c	If magnetic field $\vec{B} = x^2\hat{\imath} + 2y^2\hat{\jmath} + 3z^2\hat{k}$ then find the curl of \vec{B} .	[CO2]	[4M]	[L3]
7	a	State and Explain Gauss's Theorem for divergence.	[CO2]	[6M]	[L2]
	b	State and Explain Stoke's Theorem for curl.	[CO2]	[6M]	[L2]
8	a	Explain the Faraday's law and Ampere's law through the	[CO2]	[8M]	[L2]
	1_	Maxwell equations. Write the applications of Foreday's lay.	[CO2]	F // 13. // 13	[T 1]
9	b	Write the applications of Faraday's law.	[CO2]	[4M]	[L1]
9 10		Derive the Maxwell's equations in differential and integral form. Explain the propagation of electromagnetic wave in non-	[CO2]	[12M] [12M]	[L4]
10		conducting media	[CO2]	[121 V1]	[L2]
		conducting media			

UNIT – III (LASERS AND FIBER OPTICS)

		Civil - III (LASENS AIVE FIDER OF FICE)						
1	a	Define laser and describe the important characteristic of laser beam? [[CO3]	[6M]	[L2]			
	b	Distinguishes between spontaneous and stimulated emission of radiation.	[CO3]	[6M]	[L2]			
2	a	Enumerate the relation between the various Einstein's coefficients of absorption and emission of radiation	[CO3]	[8M]	[L2]			
	b	<u>-</u>	CO3]	[4M]	[L2]			
3	a		CO3]	[4M]	[L2]			
	b	1 1 0	CO3]	[4M]	[L1]			
	c	•	CO3]	[4M]	[L1]			
4	a	Describe the construction and working principle of He No I agar	[CO3]	[8M]	[L2]			
	b	<u> </u>	CO3]	[4M]	[L1]			
5	a	Describe the construction and working principle of NdVAG	_					
3	b	Laser with the help of a neat diagram.	[CO3]	[8M]	[L2]			
	U	has a band gap of 1.44ev	[CO3]	[4M]	[L4]			
6	a	Define total internal reflection and derive the conditions for total [internal reflection.	[CO3]	[8M]	[L4]			
	b	D 11 4 4 4 6 4 1 1 C 1	[CO3]	[4M]	[L2]			
7	a	What is the acceptance angle of an optical fiber and derive an expression for it.	[CO3]	[8M]	[L1]			
	b	An optical fibre has a core refractive index of 1.44 and cladding refractive index of 1.40. Find its numerical aperture and θ_a .	[CO3]	[4M]	[L3]			
8	a	What is the numerical aperture of an optical fibre and derive an	[CO3]	[8M]	[L1]			
	b	An optical fibre has a numerical aperture of 0.20 and cladding refractive index of 1.59. Determine the refractive index of core	CO3]	[4M]	[L3]			
9	a	Write short note on classification of optical fibers.	CO3]	[6M]	[L1]			
	b	-						
10			[CO3]	[6M]	[L2]			
10	a	diagram.	[CO3]	[8M]	[L2]			
	b	Mention the application of optical fiber in sensors	[CO3]	[4M]	[L1]			
UNIT – IV (SEMICONDUCTORS)								
1	a	Define the following terms (i) Carrier Concentration (ii) Fermi level (iii) Electrical [Conductivity (iv) Energy band gap	[CO4]	[8M]	[L1]			
	b	Enumerate the expression for intrinsic carrier concentration.	[CO4]	[4M]	[L2]			
2	a	What is Fermi level? Prove that the Fermi level is lies exactly in [between conduction band and valance band of intrinsic semiconductor.	[CO4]	[6M]	[L1]			
	b	Determine the energy band gap of the intrinsic semiconductor	[CO4]	[6M]	[L3]			

3	a	Find the conductivity of intrinsic semiconductor and energy band	[CO4]	[8M]	[L3]				
	b	structure with relevantexpressions. The following data are given for an intrinsic Ge at 300K.	[CO4]	[4M]	[L4]				
		Calculate the conductivity of the sample? (n_i = 2.4 x10 19 m ⁻³ , μ_e = 0.39 m ² -V ⁻¹ S ⁻¹ , μ_p = 0.19 m ² -V ⁻¹ S ⁻¹).							
4	a	Define Doping? Explain the formation of n-type semiconductors with banddiagram	[CO4]	[8M]	[L1]				
	b	The following data are given for an intrinsic Ge at 300K.	[CO4]	[4M]	[L4]				
		Calculate the resistivity of the Sample? (n_i = 2.4 x10 19 m ⁻³ , μ_e =							
5	a	$0.39 \text{ m}^2\text{-V}^{-1}\text{S}^{-1}$, $\mu_p = 0.19 \text{ m}^2\text{-V}^{-1}\text{S}^{-1}$). Explain the formation of p-type semiconductors with band	[CO4]	[8M]	[L2]				
	b	diagram. Mobilities of electrons and holes in an intrinsic germanium at							
	U	300K are $0.36 \text{ m}^2/\text{vs}$ and $0.17 \text{ m}^2/\text{vs}$ respectively. If the	[CO4]	[41 V 1]	[L4]				
		resistivity is 2.12 Ω m. Calculate the intrinsic concentration ?							
6	a	Enumerate the expression for current generated due to drifting of charge carriers in semiconductors in the presence of electric	[CO4]	[6M]	[L2]				
	•	field.	FGO 41	50.0	FT 01				
	b	Enumerate the expression for current generated due to diffusion of charge carriers in semiconductors in the absence of electric	[CO4]	[6M]	[L2]				
7	a	field. Enumerate the expression for Einstein relation.	[CO4]	[8 M]	[L2]				
,		-	_						
	b	Find the diffusion co-efficient of electron in Si at 300 K if $\mu_e = 0.19 \text{ m}^2\text{-V}^{-1}\text{S}^{-1}$.	[CO4]	[4M]	[L3]				
8	a	Describe the Hall Effect in semiconductors.	[CO4]	[8M]	[L2]				
	b	What are the applications of Hall Effect.	[CO4]	[4M]	[L1]				
9	a	Explain the formation of p-n junction.	[CO4]	[4M]	[L2]				
	b	Describe the construction and working mechanism of Photodiode.	[CO4]	[8M]	[L2]				
10	a	Describe the construction and working mechanism of LED.	[CO4]	[8M]	[L2]				
	b	Determine the wavelength of LED fabricated by the CdS material with band gap of 2.42ev.	[CO4]	[4M]	[L3]				
UNIT-V (SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS)									
		or in the second control of the cont	VI. I I I I I	11110)					
1		Define Superconductivity? And Prove that super conductor is a very good diamagnetic material.	[CO5]	[8M]	[L5]				
	b	Write the properties of Superconductors.	[CO5]	[4M]	[L1]				
2	a	Explain the Type-I and Type-II superconductors.	[CO5]	[8M]	[L2]				
	b	What is Meissner effect? Explain how Superconductors are behaving like a Diamagnetic material.	[CO3]	[4M]	[L2]				
3	a	Explain BCS theory of superconductors.	[CO5]	[8M]	[L2]				

	b		ate the critical current for a lead wire of 0.5mm radius . Given for lead $T_c = 7.18K$, $Ho=6.5 \times 10^4 A/m$.	[CO5]	[4M]	[L3]
4	a	i) ii)	Define Flux Quantization? Explain Flux quantization?	[CO5] [CO5]	[2M] [6M]	[L1] [L2]
	b	i)	Define Critical Temperature?	[CO5]	[2M]	[L1]
	Ü	ii)	A superconducting material has a critical temperature of 3.7K and a magnetic field of 0.0306T at 0 K. Find the critical field at 2K.	[CO5]	[2M]	[L3]
5	a	Explain	n DC and AC Josephson effects in superconductors.	[CO5]	[8M]	[L2]
	b	What a	are the applications of superconductors.	[CO5]	[6M]	[L1]
6	a	i) ii)	What is nanomaterial? Write the classification of nanomaterials.	[CO6]	[2M]	[L1]
		11)	write the classification of hanomaterials.	[CO6]	[4M]	[L1]
	b	Explai	n the basic principle of nanomaterials.	[CO6]	[6M]	[L2]
7	a	i) ii)	Define Nano Science and Nano Technology? Explain the concept of Quantum Confinement in nano	[CO6]	[2M]	[L1]
			materials.	[CO6]	[4M]	[L2]
	b	What a	re the applications of nanomaterials in different fields.	[CO6]	[6M]	[L1]
8	a	Explain materia	n why surface area to volume ratio very large for nanoals?	[CO6]	[6M]	[L2]
	b		are the mechanical, magnetic and optical properties of aterials.	[CO6]	[6M]	[L1]
9	a		are the techniques available for synthesizing nanomaterials?	[CO6]	[4M]	[L1]
	b	Explai	n ball milling technique for synthesis of nanomaterial?	[CO6]	[8M]	[L2]
10						
10	a	Explai	n Sol-Gel technique for synthesis of nanomaterial?	[CO6]	[8M]	[L2]

Prepared by: Dept. of Physics